Quantum Computer Science Spring 2024

Saeed Mehraban

Logistics:

Email: saeed.mehraban@tufts.edu
Office: JCC 465
Course website: https://www.cs.tufts.edu/comp/150QCS/
Gradescope code: ZW8E3Y
No late submissions
TA: Dale Jacobs
Email: Dale.Jacobs@tufts.edu

Grades:

10\% Class Participation
20\% Midterm Exam
30\% Final Exam
40\% Problem Set

What is quantum computing?

"It is a new paradigm of computing
based on physical devices
that harness quantum mechanical laws."

Our plan forward:

- Digital Computations
- Quantum Mechanics
- Quantum Computations
- Quantum Algorithms
- Quantum Error Correction

What is computation:

Ancient example: Constructible lengths

Non constructible

Constructible
$\sqrt{2}$

15-gon
bisector

2nd Example:
Algorithm as a algebraic description of computation

$$
\begin{gathered}
x^{2}+b x=c \\
\Longrightarrow(x+b / 2)^{2}=(b / 2)^{2}+c
\end{gathered}
$$

3rd Example Turing machines

Modern example

Ed Fredkin:
Turing machine is like a mathematician who is writing down a mathematical proof on a paper

Almost (!) equivalent to digital circuits

The Church-Turing Thesis:

All means of performing computations are equivalent to Turing machines.

Note: Turing machines follow classical physics!

Are the laws governing the physical world equivalent to the classical mechanics?

- Halting problem: Given a Turing machine, decide if it ever halts!
"Halting problem is undecidable!"

- Computation as a physical process

Wang tiles: You can encode arbitrary computations using these colored tiles

Billiard balls have equal computing power to the Turing machine!

- Big-O notation. Exponential growth vs. Polynomial growth

We say $f(n)=O(g(n))$, if there exist n_{0}, c such that for any $n \geq n_{0}, f(n) \leq c \cdot g(n)$.

Polynomial growth: $f(n)=O\left(n^{d}\right)$, constant d.

Exponential growth: $g(n)=2^{O\left(n^{d}\right)}$, constant d.

Logarithmic growth:
$h(n)=O\left(\log ^{d} n\right)$, constant d.

- Extended Church-Turing Thesis

"All computational machines are efficiently equivalent."

Efficient mean polynomial time equivalence.

Example: Factoring composite numbers.
Problem: Given an n digit composite number, find one of its factors.

$$
499242563=971 \times 514153
$$

The best algorithm known for this problem (based on number field sieve) runs in time $2^{O\left(n^{1 / 3}\right)}$. For a 3000 digit number, it takes the age of the universe to solve this problem.

A way of challenging the extended Church-Turing thesis is by giving a polynomial time algorithm for this problem.

Quantum computers as a way of challenging the extended Church-Turing thesis

In 1994 Peter Shor gave a polynomial-time quantum algorithm for the Factoring problem

Quantum computers: Computational devices which harness quantum mechanical laws.

Quantum Mechanics:

1. Subatomic particles
2. Wave-particle duality
3. Interference phenomenon
4. Entanglement
5. Energy is Quantized

Wave-particle duality

Wave-particle duality

Wave-particle duality

Wave-particle duality

Stability of materials

Classical mechanics predicts atoms should collapse within 10^{-12} seconds

According to classical physics, an electron in orbit around an atomic nucleus should emit electronmagnetic radiation (photons) continuously, because it is continually accelerating in a curved path. The resulting loss of energy implies that the electron should spiral into the nucleus in a very short time (i.e. atoms can not exist).

Credit: uoregon.org

Quantum mechanics predicts stable and quantized solutions

It was clear since the early days of quantum mechanics that simulating many-body quantum system takes exponentially-long computations

Richard Feynman: If simulating quantum systems is so difficult, let's build a computer out of quantum mechanical elements!

Quantum Algorithms

Fast simulation of molecules

Designing drugs or special materials

Fast factoring

8674238671342341 = ????????7 x ???????????
Breaking the RSA code

Fast search!

Recent implementations

Processor size

Classical Moore's law

Why is building a quantum computer so difficult?

We are writing information at atomic scales. There are no pens in there!
Solution: Fault-tolerance and error correction

Stern-Gerlach experiment

Watch this video https://en.wikipedia.org/wiki/Stern-Gerlach experiment

Experiment 1

Experiment 2

Experiment 3

$$
2
$$

Third polarizing filter experiment
Link: https://www.youtube.com/watch?v=5SIxEiL8ujA

